中文站 
搜索
看资讯 查产品 查展会
首页 / 文章详情

生物刺激素助力作物抵御高温 ——艾益农可持续解决方案

2023-08-21
qrcode

随着近年来气温不断上升,关于气候变化的讨论日趋频繁,气候变暖已成为广泛关注的问题。在全球一些地区,我们看到气温升至有记录以来的最高值。全球气候变暖是温室气体浓度上升引起的全球气温逐步升高 [1]。这是一种全球性现象,会产生难以准确预测的严重后果和大范围的影响。值得关注的是,全球不同地区都出现了高温期,这对粮食生产和植物生物刺激素地位的日益突显有着重要的影响 [1]


高温如何影响农作物?


有科学证据表明气候变化会对农业产生影响 [2]。温度是影响作物生长的重要因素。每种作物都有一个适宜生长的最佳温度范围,以及最高温度范围——超过此范围就会对作物造成不可逆的损害。


热胁迫是指环境温度超过阈值并持续一段时间,这一胁迫会阻碍植物生长发育。热胁迫严重影响作物产量,会给农业造成巨大的损失 [3]


表 1. 部分作物的最高温度阈值 [4] 

image.png


植物在热胁迫下发生适应性变化


当温度超过最高限度一定时间后,细胞会出现不可逆的损伤,作物的生长发育和产量会受到影响。植物在应对热胁迫时会发生一系列反应,以尽量减少有害影响,这些变化有以下几种。


电解质渗漏


细胞膜最先受到热胁迫的影响 [15];高温增加细胞膜的流动性和渗透性,使膜脂质变得更易流动和渗透 [16],并导致电解质渗漏 [17][18]


电解质渗漏可作为耐热性的特征,耐热植物的膜渗透性低于不耐热植物 [15][18][19]


热休克蛋白


植物通过合成和积累热休克蛋白(HSPs)来应对热胁迫 [20][21]。热休克蛋白能保护和修复蛋白免受热损伤 [22][23],使细胞在热胁迫条件下仍能发挥功能 [24][25]


产生抗氧化剂


热胁迫通过诱导产生活性氧(ROS)来引发氧化胁迫。为了减轻活性氧造成的损害,植物会产生大量抗氧化酶 [25][26]


积累相容渗透物


在热胁迫下,植物会积累相容渗透物 [19][20][27][28]。这些物质的积累可增强植物对热胁迫的耐受性 [19][24][26][29]


植物生物刺激素在减轻气候变化对作物性状影响方面的功效


在艾益农,我们非常清楚气候变化在当前和未来对农作物造成的损害,因此我们的研发部门着力研究能够提高植物热胁迫耐受能力的生物刺激素产品。我们进行了转录组学测试,从而筛选出能够提高植物热胁迫耐受能力的最佳活性物质。


表 2. 在胁迫情况下由艾益农独有物质激活基因,该提取物可诱导热休克蛋白以及参与中和活性氧(ROS)的酶的表达

image.png


对这一领域的持续研究促使我们不断寻找能提高植物胁迫耐受能力的活性化合物制剂。为此,我们在生长室中进行了另一项试验,获得了可以证明我们的处理剂在热胁迫条件下有效性的数据。下面这项在生长室内进行的研究中,番茄被置于白天 40ºC,夜晚 28 ºC 的环境中 7 天,然后用艾益农制剂进行了两次处理,剂量为 3 L/ha(表 3)。


表 3. 热胁迫试验条件

image.png

image.png


结果表明,添加我们的产品后,植株的叶面积指数提高67%,叶片干重提高 33%,植株高度增加 39%;同时还促进了根系发育,使根面积指数提高 30%,根干重提高 10%。在相同的热胁迫条件下,与对照植株相比,使用艾益农产品处理后植株的营养生长和根系发育均得到了改善。   


image.png

image.pngimage.png


这些试验的初步结果表明,根据我们对活性化合物的了解而选择的制剂能够促进植物生长,帮助它们更好得抵御热胁迫造成的不良影响。


这些理想的一手数据激励我们继续研究,以获得专用配方产品,满足农业食品行业当前和未来的需求。


image.png


联系方式

contact-us@agritecno.es

aijia.zhang@agro2agri.com


参考

[1] Jarma, A., Cardona, C., & Araméndiz, H. (2012). Effect of climate change on the physiology of crop plants: A review. Revista UDCA Actualidad & Divulgación Científica, 15(1), 63-76.

[2] IPCC. Grupo Intergubernamental de Expertos sobre el Cambio Climático. Cambio climático 2007: Informe de síntesis. Ginebra: 2007.

[3] Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133(6), 679-701.

[4] Hossain, A., da Silva, J. A. T., Lozovskaya, M. V., & Zvolinsky, V. P. (2012). The effect of high temperature stress on the phenology, growth and yield of five wheat (Triticum aestivum L.) varieties. Asian and Australasian Journal of Plant Science and Biotechnology, 6(1), 14-23.

[5] Stone, P. J., & Nicolas, M. E. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 21(6), 887-900.

[6] Thompson, L. M. (1986). Climatic change, weather variability, and corn production 1. Agronomy Journal, 78(4), 649-653.

[7] Rahman, H., Malik, S. A., & Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research, 85(2-3), 149-158.

[8] Ashraf, M., & Hafeez, M. (2004). Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia plantarum, 48, 81-86.

[9] Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of plant physiology, 162(3), 281-289.

[10] Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer Brassica. Crop science, 42(3), 797-803.

[11] Siddique, K. H. M., Loss, S. P., Regan, K. L., & Jettner, R. L. (1999). Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research, 50(3), 375-388.

[12] Vara Prasad, P. V., Craufurd, P. Q., Summerfield, R. J., & Wheeler, T. R. (2000). Effects of short episodes of heat stress on flower production and fruit‐set of groundnut (Arachis hypogaea L.). Journal of experimental botany, 51(345), 777-784.

[13] Patel, P. N., & Hall, A. E. (1990). Genotypic variation and classification of cowpea for reproductive responses to high temperature under long photoperiods. Crop Science, 30(3), 614-621.

[14] Morita, S., Siratsuchi, H., Takanashi, J., Fujita, K. (2004) Effect of high temperature on ripening in rice plant. Analysis of the effect of high night and high day temperature applied to the panicle in other parts of the plant. Japanese Journal of Crop Science 73, 77-83

[15] Wang, LC, MC Tsai, KY Chang, YS Fan, CH Yeh y SJ Wu. 2011. Participación del homólogo de la proteína de anclaje HIT1/AtVPS53 de Arabidopsis en la aclimatación de la membrana plasmática al estrés por calor. Exp. J. Bot. 62:3609-3620.

[16] Savchenko, GE, EA Klyuchareva, LM Abrabchik y EV Serdyuchenko. 2002. Efecto del choque térmico periódico sobre el sistema de membrana de los etioplastos. Ruso. J. Plant Physiol. 49:349-359.

[17] Porch, T.G., and A.E. Hall. 2013. Heat tolerance. In: C. Kole, editor, Genomics and breeding for climate-resilient crops. Vol. 2. Springer-Verlag, Berlin, GER. p. 167-202. 

[18] Gisbert-Mullor, R., Padilla, Y. G., Martínez-Cuenca, M. R., López-Galarza, S., & Calatayud, Á. (2021). Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Scientia Horticulturae, 290, 110529.

[19] Chaves-Barrantes, N. F., & Gutiérrez-Soto, M. V. (2017). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237-253.

[20] Iba, K. 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53:225-245.

[21] Zinn, K.E., M. Tunc, and J.F. Harper. 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. J. Exp. Bot. 61:1959-1968.

[22] Barua, D., Downs, C. A., & Heckathorn, S. A. (2003). Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Functional Plant Biology, 30(10), 1071-1079.

[23] Hu, S., Ding, Y., Zhu, C., 2020. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00375.

[24] Wahid, A., S. Gelani, M. Ahsraf, and M.R. Fooland. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-223.

[25] Almeselmani, M., P.S. Deshmukh, R.K. Sairam, S.R. Kushwaha, and T.P. Singh. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382-388.

[26] Wahid, A., and T.J. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51:104-109.

[27] Schwacke, R., S. Grallath, K.E. Breitkreuz, E. Stransky, H. Stransky, W.B Frommer, and D. Rentscha. 1999. LeProT1, a transporter for proline, glycine betaine, and g-amino butyric acid in tomato pollen. Plant Cell 11:377-391. 

[28] Nagesh, R., & V.R. Devaraj. 2008. High temperature and salt stress response in French bean ( Phaseolus vulgaris ). Aust. J. Crop Sci. 2:40-48.

[29] Park, E.J., Z. Jeknić, and T.H. Chen. 2006. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 47:706-714


本文首登于AgroPages世界农化网最新出版的《2023生物制剂专刊》

image.png


收藏 打印
邮件分享

0/1200

0/1200

相关文章推荐换一换

    热搜产品

    产品名称:
    公司名称:
    产品简介:
    链接地址:
    我要报道 评论

    订阅 

    订阅Email: *
    姓名:
    手机号码:  
    分享到微信朋友圈

    使用微信“扫一扫”即可将网页分享至朋友圈。